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Abstract—Interest in hyperspectral imaging systems has 
increased recently substantially for studying and monitoring plant 
properties and conditions. The numerous financial (i.e. improve 
breeding process) and environmental (i.e. reduce usage of 
herbicide) advantages of such systems have been a driving force 
behind the latest surge. This paper aim to differentiate different 
plant species using hyperspectral image analysis. Main 
contribution of the work lies in the use of combined output of 
multiple feature selection algorithms, as compared to the use of 
single feature selection algorithm. Two independent hyperspectral 
datasets, captured by different instrumentations, were used in the 
evaluation. In total, six different feature selection algorithms 
(relief-f, chi-square, gini index, information gain, FCBF, and CFS) 
were used in the experiment. Experimental results show 
significant improvements in classification accuracy with the 
ensemble version of multiple feature selection algorithms 
compared to with the individual feature selection algorithms. 
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I. INTRODUCTION 
The development of hyperspectral imaging system has 

prompted a great number of innovative scientific quests [1]. 
Hyperspectral imaging, a branch of multivariate imaging [2], 
captures spectral and optical properties of an object combining 
spectroscopy and imaging technologies. These are three main 
configurations for acquiring hyperspectral images [3]: point, 
line, and plane scanning. The popularity of this imaging branch 
has increased recently due to the benefit of sensing a wider range 
of electromagnetic spectrum as well as gathering a large number 
of narrow band spectra [3]. Hyperspectral imaging has been 
used in a growing number of applications such as, medical 
imaging [4], agricultural monitoring [5, 6], and industrial [7] and 
chemical processes [8]. 

The need for an efficient and effective analysis method has 
been elevated along the advances in hyperspectral imaging 
system as large amount of data is being generated and it is 
difficult to analyse the information directly from pixel values. 
Machine learning is considered as one of the effective analysis 
tools. Feature selection and ensemble learning are two widely 
used techniques, designed to achieve better generalisation 
performance [9]. 

The process of selecting a relevant subset of features, 
wavelengths in this case, and removing irrelevant and redundant 

ones based on certain evaluation criteria is called feature 
selection [10, 11]. It aims to enhance the performance using an 
optimal subset (relevant features) compared to the use of the 
entire feature set. The meaning of each feature needs to be fully 
understood in order to select appropriate features. A 
considerable amount of literature has been published on feature 
selection. These studies cover dependent and independent 
evaluation criteria, feature selection models, applications, and 
introduced new algorithms [10-12]. 

Ensemble learning has been studied for over 20 years with 
the primary goal of improving prediction performance [13, 14]. 
Several learning systems are combined, either weighted or 
unweighted, to obtain improved predictive performances 
compared to the single learning systems. The main advantage of 
such an approach is minimising the risk of selecting a least 
preforming learner. In other words, the performance of 
combined outputs from multiple learners may or may not 
outperform the most superior learner, but is usually better than 
the average, or  typical single learner. 

This work focuses on classifying different crops based on 
hyperspectral images using a combination of feature selection 
algorithms. It compares the results with that of using single 
feature selection methods. It has been shown that using relevant 
features improves performance of ensemble learning approach 
[9]. Only the best feature selection algorithms are used in each 
stage and passed to the final stage. Support vector machine 
(SVM) classifier is used as it deals with curse of dimensionality 
problem effectively [15], hence reducing the risk of overfitting. 
The results show significant improvements in accuracy over the 
individual selection algorithms. 

The reminder of the paper is organised as follows. An 
overview of feature selection and ensemble learning are given in 
section II. Section III presents the imaging system, datasets and 
corresponding analysis. The experimental results and 
discussions are given in section IV and followed by the 
concluding remarks in section V. 

II. BACKGROUND 
An overview of feature selection and ensemble learning is 

given in this section. In addition, examples of both techniques 
are highlighted. 



A. Feature Selection 
Large amount of data is being generated with the recent 

hyperspectral imaging systems. However, the entire collected 
data does not necessarily contain useful information to the 
problem investigated. Feature selection minimises the feature 
space into relevant features only to have better predictive 
performance than the entire features. There are several methods 
to identify the relevancy of feature 𝑥" from a feature space 𝑋 =
𝑥% … 𝑥'  for a specific dataset 	𝐷  with different classes 𝐶 =
𝑐% … 𝑐' . For example, if two classes 𝑐%, 𝑐-  in 𝐷  can be 

distinguished using single feature 𝑥" , then this feature is 
considered as relevant and vice versa. 

Feature selection process can be described in four steps: 
search organisation, subset evaluation, stopping criteria, and 
result validation [10-12]. The first two steps are responsible for 
generating different subsets and evaluate the goodness of the 
generated subsets individually based on a specific evaluation 
criterion such as distance, information, dependency, 
consistency, and accuracy. On the other hand, the last two steps 
determine when the process should be halted (i.e. reaching 
threshold) and the significance of the selected subset or the 
stopping criterion. 

Feature selection can be broadly categorized, based on 
evaluation criteria, into the filter, wrapper, and embedded 
models [10-12, 16]. The main difference between these three 
models is their dependence to the classification algorithm; the 
filter method is independent and the remaining two are 
dependent. In other words, a filter model depends on data 
characteristics to rank entire features and then selects the 
relevant ones among them, while classification algorithms are 
essential in the last two models to identify a subset of relevant 
features. It should be noted that performance of feature selection 
techniques varies due to the ability of individual technique to 
discard redundant or irrelative features. Moreover, the 
embedded model was introduced to utilise both filter and 
wrapper models, i.e. rank features based on their data 
characteristics and evaluate their goodness through 
classification algorithms. In addition, the wrapper and 
embedded models are easy to implement, whilst filter model can 
produce acceptable to good performances in short time [16]. The 
pseudo code of generalised feature selection is presented in table 
I. 

There is a large number of published studies introducing 
various feature selection algorithms such as ReliefF, chi-square, 
gini index, information gain, fast correlation based filter 
(FCBF), and correlation based feature selection (CFS) [17-19]. 
ReliefF uses the distance between the instances to identify 
features relevancy [20]. It is an extension of relief version to 
handle multiple classes. ReliefF evaluation criterion ( )ixJ  is 
used to update weight vector and is given in: 
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where ( ) ( ) NMNHr xxPCCd ,,.,,,. 1 represents distance function, 
class 1 and the remaining classes, probability, nearest hit, and - 

TABLE I.  GENERALISED FEATURE SELECTION ALGORITHM 

General Filter Algorithm 
Requirements: 
𝐷: data set 
𝑋: feature space with 𝑥"  feature 
𝑌: label 
𝐽: evaluate criteria 
CA: classification algorithm % Wrapper & Embedded 
Feature Selection Process: 
𝑆"'"3"45: initialise feature subset (empty or full) 
Start: 
𝑆'67: add or remove feature to the subset based on 𝑆"'"3"45  
Evaluate(𝑆'67, 𝐷, 𝐽) 
Evaluate(S9:;, D, CA)  
If 𝐽 𝑆'67  is better than 𝐽 𝑆"'"3"45  
If 𝐂𝐀 𝐒𝐧𝐞𝐰  performance is better than CA SC9CDCEF  
𝑆G = 𝑆'67: optimal subset 
Repeat if stopping criteria == false 
end 

 

miss respectively.  Chi-square is another method used to test the 
independency between the features and class labels. Its 
evaluation criterion can be described as: 
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where
ijµ represents the expected value. Moreover, gini index (3) 

is a quantifying method to measure the ability of individual 
feature to distinguish between classes. 
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where 𝑃(𝑖|𝑋) is conditional propability of class i given set of 
samples. Information gain is widely used as an individual 
evaluation criterion or as preliminary measure for other criteria. 
It is measuring the uncertainty and based on Shannon’s entropy: 
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FCBF uses information gain to measure symmetrical 
uncertainty (SU), which helps to minimisee feature bias. SU can 
be measured using: 
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where ( ) ( ) ( )YXHXHYXI −=,  and represents information 
gain. CFS evaluates the output of SU based on (6): 
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where 𝑀𝑒𝑟𝑖𝑡Q	 represents the heuristic merit of a subset 
containing 𝑛	features, 𝑟ST		represents the average feature-class 
correlation, 𝑟TT		 represents the average feature-feature 
correlation. 



B. Ensemble Learning 
Ensemble learning can be defined as the process of 

combining different learning algorithms, either weighted or 
unweighted, to obtain enhanced predictive performances when 
compared to single learning systems. The diversity of the 
learning algorithms that generate uncorrelated error patterns 
need to be promoted in the ensemble learning system in order to 
improve the performances [14, 21]. The diversity can be ensured 
either using resampling techniques or using different features. 
The former includes varying the parameters of the learning 
techniques or varying learning algorithms, while different sets 
of features are used to train each learner in the latter. 

Ensemble diversity can be measured by several quantitative 
methods [14, 21]. Correlation and Q-statistics are two examples 
to measure the diversity through the probabilities. 
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where a,d represent the ratios of the samples that are correctly 
and wrongly classified by both learning algorithm to the total 
number of samples respectively. b,c represent the ratios of the 
samples that are correctly classified by at least one learning 
algorithm to the entire samples, and the summation of them is 
unity, i.e. a+b+c+d=1. 

Different methods can be used to construct ensembles [14]. 
Some of these methods are general, using any learning 
algorithm, while the others are limited to particular learning 
algorithms. Bagging is one of the simplest ensembles to 
construct, where different input subsets are randomly replicated 
from the original input dataset with the goal of increasing 
diversity. Boosting is a general ensemble that boosts the 
performance of the weak learning algorithms. Stacking is a very 
old method and thus less preferable to bagging and boosting, as 
there is no standard procedure to implement it. This method is 
divided into two stages: ensemble and learning algorithm stages. 
It should be mentioned that the final result is achieved by 
combining the entire outputs of each leaner (averaging or 
majority voting).   

III. MATERIALS AND METHOD 
The datasets were taken by two hyperspectral imaging 

systems; University of Manchester (UoM) system and 
University of Bonn (Bonn) system. The former system generates 
effective image size of 5184×3456 pixels and operates over both 
the visible (VIS), 380 – 720 nm, and near infrared (NIR), 730 – 
1000 nm, regions with spectral resolution of 5 nm. The system 
operates in a controlled environment (dark box) in order to 
minimize the effect of unwanted noise. The latter system is a line 
scanning system with 2.8 nm spectral resolution and a spatial 
resolution of 0.29 mm [22]. It operates over the range of 400 to 
1000 nm and maximum effective line that can be achieved with 
system is 1600 pixels. More details about the orientation and 
pre-processing of this system can be found in [22]. 

Two datasets (UoM and Bonn) with different acquisition 
dates and exposure times were used for the analysis. The UoM 
dataset consists of weeds and non-weed species (potato, wheat,  

 
Fig. 1. Plant leaves sample. Non-standard RGB representation of (a) UoM 
steme weed captured on 2015 (b) Bonn healthy sugar capture on 2013 

and oil seed), while the Bonn dataset contains healthy and 
unhealthy (Cercospora and rust) sugar species. Both datasets 
were prevented from saturation (dynamic range management) 
and were spectrally normalized using the reference grey tile 
included in the image scene and the  reference white (barium 
sulphate) tile, respectively. Fig. 1 shows samples of the UoM 
and Bonn datasets. 

Fig. 2 illustrates the schematic overview of the proposed 
method. An N-fold validation is applied to feature selection 
(FS), resulting N feature pools. Each FS pool consists of six 
feature selection algorithms (discussed in section II). In each 
pool only the best performing algorithm is retained and passed 
on to the ensemble. That means each pool is working as a switch, 
and selecting a single algorithm only. Thereafter, the selected 
methods, deemed to be the best from each pool, are used to 
produce the combined performance (i.e. majority voting in this 
case). 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
The experiment assessed the utility of the proposed method. 

The utility was determined by comparing the result of the 
proposed ensemble method with the result of the existing feature 
selection algorithms. The procedure of this experiment was 
divided into four steps. 

First, leaf reflectance extraction: averaging twenty pixels 
from leaf area to reduce the variation in pixels intensities and get 
the spectral signature. Second, selecting relevant wavelength: 
employing feature selection algorithms. Third, using the 
proposed method to select the best performing feature selection 
algorithms in each pool then combining them and last, 
comparing the classification performance. Table II shows the 
classification results of the proposed method as well as the 
individual feature selection algorithms. The percentage of 
training and testing set was 1:2 to the entire datasets. In addition, 
10-fold cross validation was used, and the classification rates 
were the average of 100 runs. 

The classification rate of the proposed method has been 
shown an improvement of 3.3% on UoM dataset and 0.46% on 
Bonn dataset compared to the best individual feature algorithms. 
In addition, a statistical test (p-value) was performed to 
determine the significance of the proposed method. P-value at 
1% significance level is 2.36. The calculated p-value of the  pro- 

(a) (b) 



 
Fig. 2. Schematic diagram of the proposed method. Single arrow represents 
selection of the best feature selection algorithm at each pool. 

-posed method was 7.07 and 3.29 for UoM and Bonn datasets, 
respectively, compared to the best performing feature selection 
algorithm (gini), thus the improvement is significant 

V. CONCLUSION 
The results of our experiment agree with previous studies on 

using ensembles for improving the prediction performance [9]. 
This finding assisted us in proposing a feature selection 
ensemble where the performance of different feature selection 
algorithms was combined. The prediction performance of the 
proposed method has shown an improvement of 3.3% and 
0.46% on hyperspectral datasets (i.e. UoM and Bonn dataset 
respectively) compared to the best individual feature algorithm. 
Moreover, the statistical test has shown the significance of the 
proposed method with 1% significance level. The results of the 
proposed method indicate that combining the feature selection 
methods tends to be more robust and generally provides better 
performances than any individual algorithm. Future studies will 
explore weighted version of the proposed ensemble to 
investigate further improvement in prediction performance. 
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